If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-16x-141=0
a = 6; b = -16; c = -141;
Δ = b2-4ac
Δ = -162-4·6·(-141)
Δ = 3640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3640}=\sqrt{4*910}=\sqrt{4}*\sqrt{910}=2\sqrt{910}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16)-2\sqrt{910}}{2*6}=\frac{16-2\sqrt{910}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16)+2\sqrt{910}}{2*6}=\frac{16+2\sqrt{910}}{12} $
| (x-4)+(2x-5)-3x(x-4)=8 | | Tn=2n+6 | | 2z+z+2+3z+z+2=7+z | | .2x=0.9-0.1x | | 100/20=80/x | | X2+15x-1620=0 | | 4n2-9=16 | | 7x/35-5=-1 | | -3n=1 | | X+.75x=16 | | 7(3w+8)/3=7 | | 2x5=12-3 | | 39(f-3)=-15 | | -9a-6/81=0 | | 5x+15=3x+6 | | 62-2x=-64-8x | | 5y-14=19 | | 7(4x-5)=24+1 | | 3(x=1)=2(x-3) | | 7x+34=-23 | | 2/5x-1/4=1 | | -16=2x=-24+7x | | 6x+5=-99+7x | | 6x+7^5=2x-4 | | 5=10x=-31+x | | 5=10x=-31=x | | a(4-3)=3(6-2 | | d-10=25 | | 3x=81−6x | | 4/3=2m/15 | | 2x+1/3+x=x+2/5 | | 2a=155 |