If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-17x-3=0
a = 6; b = -17; c = -3;
Δ = b2-4ac
Δ = -172-4·6·(-3)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-19}{2*6}=\frac{-2}{12} =-1/6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+19}{2*6}=\frac{36}{12} =3 $
| -4y+7=-5y | | x+0.08x=277 | | 5=1/2.2w | | 2x-14=-(x+3) | | -5=2-h | | -2c+4=-c | | 5/9(f-32)=-14 | | -10-4x=3x-80 | | -10g=5-9g | | 1188=3.14(6)^2h | | 2b=b+8 | | 2y+21=9y | | 9+6w=-9+9w | | 4x+3=-19-7x | | 3x-2/5=-9 | | 4a-3{a-2}=2{3a-2} | | -4n=-6n+8 | | 1188=3.14(36)h | | ((4(4w+4))/5)=1 | | -3x-8=-16-7x | | -7+7u=6u | | 3(d+12)=8+3d | | 6x2=12 | | 6c+5=7c | | -8a—1=-23 | | 9v-5=10v | | 0.3m+3-0.83m=-15 | | 5(2−y)+y=−6 | | -9+4m=5m | | -252=-7p-7(-5p+8) | | 5-z/1/2=3 | | 9x-15=6x-3 |