If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-18=32
We move all terms to the left:
6x^2-18-(32)=0
We add all the numbers together, and all the variables
6x^2-50=0
a = 6; b = 0; c = -50;
Δ = b2-4ac
Δ = 02-4·6·(-50)
Δ = 1200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1200}=\sqrt{400*3}=\sqrt{400}*\sqrt{3}=20\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-20\sqrt{3}}{2*6}=\frac{0-20\sqrt{3}}{12} =-\frac{20\sqrt{3}}{12} =-\frac{5\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+20\sqrt{3}}{2*6}=\frac{0+20\sqrt{3}}{12} =\frac{20\sqrt{3}}{12} =\frac{5\sqrt{3}}{3} $
| 44x+2=50x+-16 | | 8-2x=20-6x | | 7x7+5=6*6x+8x | | (8/3)3.14=(2)3.14(m/360) | | (8/3)3.4=(2)3.14(m/360) | | 5+10x=7x*2^2 | | 5+10x=14x | | (26x-5)-(5+10x)=(7x)2 | | 5+10x=7x*2 | | -4-m=32 | | 9+q=63 | | (26x-5)-(5+10x)=7x | | 5+10x=7xx2 | | m+23=23 | | 5x+1/4=61/4x= | | 26x-5-5+10x=2(7x) | | h-12=12 | | 7i(−3i)= | | (t^2+4)+24=180 | | 6x+46+7x-14=214 | | 6x-5=101-6x | | 6x=3(x−4)−x | | x+24+7°=90° | | 3/5u=9 | | x+24+7+90°=90° | | g/10=30 | | $3.50x=$42 | | x+7+90°=90°+24 | | k/3=30 | | 3/5z=14.55 | | 14÷3/11=14x | | 5(x+4)=4(x−6) |