If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-18x-1=0
a = 6; b = -18; c = -1;
Δ = b2-4ac
Δ = -182-4·6·(-1)
Δ = 348
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{348}=\sqrt{4*87}=\sqrt{4}*\sqrt{87}=2\sqrt{87}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-2\sqrt{87}}{2*6}=\frac{18-2\sqrt{87}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+2\sqrt{87}}{2*6}=\frac{18+2\sqrt{87}}{12} $
| 9−4w=–11 | | g+7=45 | | 4+4(x)=36 | | 9-x=0.32x | | 7n-21=24. | | f-9=17 | | 7n-8=24. | | 3x-4+2x=-x+2 | | 48=r-44 | | 6/x=2x-4 | | n+11=58 | | -4x-2=5+3x | | 21x-21=27x-81 | | (3)(-3)(-2)(4)=x | | q-26=60 | | 0.7(6+d)=12 | | m+27=58 | | 214q+72-3q=9+25q | | 5(x−3)+2x=2x−20 | | 15h+50=125 | | d-7=54 | | 50h+15=125 | | 4x²-2=30 | | 29-w=218 | | 1/4x+2=−3+1/2x | | h-43=26 | | 5x75=375 | | -1.2x+3=15.3 | | -3=3x-15 | | x=12=18 | | 3x+11=-2x-24 | | –6r=6−4r |