If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-26x+8=0
a = 6; b = -26; c = +8;
Δ = b2-4ac
Δ = -262-4·6·8
Δ = 484
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{484}=22$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-26)-22}{2*6}=\frac{4}{12} =1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-26)+22}{2*6}=\frac{48}{12} =4 $
| 8s-6s+s=18 | | 3x+1=+-11 | | f-15/37=22/37 | | 6x+6=-49 | | x3+4=27 | | 6j-2j-3j+j+2j=20 | | −5x+12=-5x-12 | | (2x-5)+(3x/2+10)+(4x/3+7)=128 | | x×3+4=27 | | 8c-6c+4c-5c=11 | | F^2-4f=5 | | 6x+4x+60+160=360 | | 7j-4j-2j+2j+j=16 | | a÷4-8=14 | | 4.9t^2+4t-80=0 | | 2x+21+5x+6+90+54=360 | | (x+5)^2=x^2+25 | | |2x+2|=1 | | 78=–2(m+3)+m | | 3m-2(m=7)=m+14 | | 20x-12=48 | | 7j−4j−2j+2j+j=16 | | m^2-7=15 | | -n/5-9=-7 | | 7+a=7 | | 18k-14k-4K+3k-2k=I | | -4x+6=-5 | | 7y-4y-2y+y=14 | | 5(2x-1)=2x+7 | | 31+3k=10 | | 31=3k=10 | | 1/4(8x-12)=4x+17 |