If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-36+18=0
We add all the numbers together, and all the variables
6x^2-18=0
a = 6; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·6·(-18)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{3}}{2*6}=\frac{0-12\sqrt{3}}{12} =-\frac{12\sqrt{3}}{12} =-\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{3}}{2*6}=\frac{0+12\sqrt{3}}{12} =\frac{12\sqrt{3}}{12} =\sqrt{3} $
| 3^3/4=r+1/8 | | (7x)=-21 | | a+3/23=5/7 | | m=108+243 | | (7x)=21 | | 23x−16=12x+56 | | 4b+3(6b)-16+4=98 | | (7x)=-28 | | 2x/3-30=22 | | -36-5x=36-8x | | x−3.27=4.09 | | (7x)=28 | | 5t+0.5=14.5 | | Z+45+z=153 | | 88.8=2f | | x+(2x-8)=31 | | 288-48t-16^2=0 | | 51=6(2x-4)-9x | | -x-3.4=-2.5 | | w+8/4=-10 | | 3x-6(x-2)=9 | | 4b+3(6b)=98 | | -2x+(-5)=19 | | 4x+5(x-3)=3 | | 10=0.8d | | 2x/11-14=2 | | 4+x-17=2 | | 9x+5x+14-6=48 | | 30=s(10) | | –2(18–3y)=7y+2y | | -19=n/14 | | 9x-5x+14-6=14 |