If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-36x+48=0
a = 6; b = -36; c = +48;
Δ = b2-4ac
Δ = -362-4·6·48
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-12}{2*6}=\frac{24}{12} =2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+12}{2*6}=\frac{48}{12} =4 $
| |4x+3|+7=2 | | (X+5)^2=2x^2+2x+37 | | 400=(4a)^2 | | H=-16t^2+120t+300 | | 32=2+2d | | 32=2+5d | | 4+(4x-3)=7 | | -5x-4(1-3x)=18+7x | | 4j−10=3j−8 | | 2/x+3/x-1=1 | | 8r+5=3r+30 | | 4x^2-3x-5=10x-2x^2 | | 2x-(5x+7)=4+(14+2x) | | 4x^2-2=12x | | 4x^2+75-166=0 | | 24=17y-9y | | -0.025x^2+90x=860 | | 10/3=x/(-5/2) | | 2=4x+3/5-x/3 | | 1/7x+1/3x+6=0 | | 3x^2-1x=-3x+8 | | -9t+2=-9t-7(6÷2(49)+8) | | 1/7x-1/3x+6=0 | | g/3+10=12 | | -7x-3.5=4x-3.2 | | 9(5-z)/8=z | | -3x+6x=4(x+3)-x+12 | | 3x+x/2+x+7=151 | | 3z+18=2z+2 | | 6(x+2)+9=-9 | | 3x+45=x+45 | | 3x+x=-88 |