If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-40x-14=0
a = 6; b = -40; c = -14;
Δ = b2-4ac
Δ = -402-4·6·(-14)
Δ = 1936
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1936}=44$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-44}{2*6}=\frac{-4}{12} =-1/3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+44}{2*6}=\frac{84}{12} =7 $
| 72.2=8.8x+x^2 | | 896=2x^+24x | | x=65+x+7x | | x=34x+2-x | | x=34x+2 | | 57+x+23=180. | | (120/x)/6=60 | | (13x-4.2)+39=180 | | -4/9a=5/6 | | -2.1=y/2+1.1 | | 15.1=-4.1+6u | | -5x-17=2/3x-4 | | 2/3y+1/2=1/y | | 1/30x=1/90 | | 0.14u=0.182 | | 5b-3/4=b | | 0.8f=112 | | 1.2t=0.48 | | -1/2x-4=5/4x+3 | | 13=e+15 | | 5t=-4 | | x+20+60=180 | | x+5+80=180 | | 30x+150=180 | | (y/2)+y=450 | | -24/x=8 | | 3x+28=130 | | 2x/2=(x+1)/5 | | 2/x-4+2=12/x^2-8x+16 | | /x-4+2=12/x^2-8x+16/ | | 2/x-4+2=12/x2-8x+16 | | 10x-11=4x-72)14x-25=20x+93)-3(5-x)=35-5x4)14x+3 |