If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-42x+12=0
a = 6; b = -42; c = +12;
Δ = b2-4ac
Δ = -422-4·6·12
Δ = 1476
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1476}=\sqrt{36*41}=\sqrt{36}*\sqrt{41}=6\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-6\sqrt{41}}{2*6}=\frac{42-6\sqrt{41}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+6\sqrt{41}}{2*6}=\frac{42+6\sqrt{41}}{12} $
| 2x+3(5x-6)=47 | | 6+11u=-20+9u | | 3-b/4=6 | | q+33/6=8 | | 19u=11u+20 | | w2=47 | | -5p-15p+7p+20p+3p=20 | | x2-11=x+9 | | 19c+8=-18+5c-2 | | 10-18t=-19t | | -53=8w+-17 | | -15=-3/8x | | 10+8z=-14 | | 9x+12x=105 | | 20u+4u-16u-4u=20 | | 2/4x+7=-51 | | 4.26−12.7j=13.3j | | -8-10-5u=-10-6u | | 14-z=1-z | | 160=3x+x+8 | | -17r+12r-5r=20 | | 12+15s=16s+18 | | 17-f=4f-6f-3 | | -4.52-11.7m=-1.7-9.9m-3.37 | | Y=2,5x-4 | | 7a-6a=12 | | -4.52−11.7m=-1.7m−9.9m-3.37 | | 7−j=16 | | 7−-j=16 | | -7(4x-7)+3=-28x+52 | | 45=10y-5 | | 4.52-11.7m=-1.7-9.9m-3.37 |