If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-4x=0
a = 6; b = -4; c = 0;
Δ = b2-4ac
Δ = -42-4·6·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4}{2*6}=\frac{0}{12} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4}{2*6}=\frac{8}{12} =2/3 $
| 2s-25=s+26 | | 2/3-1=7a/15+3 | | 8(8x-6)=21-5x | | 3(6x-4)+7x=4x-12+21x | | 3/7-y=17/7 | | 2y+17=12-3y | | -3/5+w=1/3 | | k^2+5k-11=0 | | 9x-5=5x+25 | | 1.2/4.9=x/7.3 | | ƒ(x)=2x2+3 | | 8x+10-2x=30+4x+30 | | 3(2x-6)+2x=-90 | | x-2/5=1/34 | | X=6x7 | | x^2-250*x+5=0 | | 8x-3=5x+27 | | 24+15=3x | | 9x-4=15x-28 | | 2(x-3)+11x=3x+4 | | 11+6=4+x | | 4-8b=-52 | | 5(2y-5)-(7y+2)= | | 10-2z=3 | | −4+6(5z+3)=−(z+4)−5 | | -6z+36=3(3z-8 | | 12x+9=2x-10 | | y+0,12y=0 | | 8^2x-4=1/4 | | 2x/10=15 | | 1=7r-15 | | x0.4=0.8 |