If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-4x=5
We move all terms to the left:
6x^2-4x-(5)=0
a = 6; b = -4; c = -5;
Δ = b2-4ac
Δ = -42-4·6·(-5)
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{34}}{2*6}=\frac{4-2\sqrt{34}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{34}}{2*6}=\frac{4+2\sqrt{34}}{12} $
| (5t/6)-(t/3)=1 | | 5t+15=-20-4t-10 | | 9+8i^2=17 | | -10-8m=-3m+10 | | 40=-5•h | | -x^2=1/2x+2 | | -6(x+5)=23 | | 28=s-10 | | 5y-2=10y+43 | | 92=-9x-16 | | -x^2=1/2+2 | | (5+2t)(7+2t)=175 | | 91=u+6 | | 3x-5+x=7 | | (5+2t)+(7+2t)=175 | | -1/8=8x | | -8m+13=-11m-19 | | x2-11x=42 | | h+2.1=9.9 | | (y+7)^2+6=50 | | 27=3c-18-3(2c) | | 10x-(7x-8)=32 | | 8x-31=-4x+7 | | 10x-6+35x-14=70 | | 6^(2n+1)+6^2=6^(n)+6^(n+3) | | 5(2x-5)=11(x+4) | | 6-x=2x+1 | | 1-10x=-81 | | 9.3=q-10.2 | | 4(x+5)^4-53(x+5)^2=-49 | | 8(w*6)=168 | | 17.12+6.6w=15.78+6.4w |