If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-54x+24=0
a = 6; b = -54; c = +24;
Δ = b2-4ac
Δ = -542-4·6·24
Δ = 2340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2340}=\sqrt{36*65}=\sqrt{36}*\sqrt{65}=6\sqrt{65}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-54)-6\sqrt{65}}{2*6}=\frac{54-6\sqrt{65}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-54)+6\sqrt{65}}{2*6}=\frac{54+6\sqrt{65}}{12} $
| -3=-5x=120 | | -7+23y=108 | | -305x=120 | | -5g-7=17 | | 6x+18=3x+39 | | -x+209=42 | | 9/x=30/90 | | 275=199-x | | -3/5-1/3u=-1/4 | | 4x/5-7x/8=9/20 | | 5-x-x=(-1) | | y=9y+4 | | 163=255-v | | 8n=-8n^2+96 | | 1/5(10x-5)=12-8x | | 22=(x+9) | | -1/5-4/9a=2/ | | -7/5-1/2x=-4/3 | | 3=2x+9/5 | | 20t-19-13t-8=20 | | -5/3w-2/5w=-1/2 | | t/4+9=11 | | 4/3=5x | | 3899x^2+5824x+5976=0 | | -5/3-2/5w=-1/2 | | 6y+2+3y+9=11y-1 | | 24-6x=-72 | | (2x-1)^2=-8x | | 27=4(u+3)-7u | | 1+8(3-4n)=-31-4n | | 2x+100-x=6x-7 | | 45y=9= |