If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-5x=50
We move all terms to the left:
6x^2-5x-(50)=0
a = 6; b = -5; c = -50;
Δ = b2-4ac
Δ = -52-4·6·(-50)
Δ = 1225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1225}=35$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-35}{2*6}=\frac{-30}{12} =-2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+35}{2*6}=\frac{40}{12} =3+1/3 $
| (2x-3)^4/5=50 | | 5^2+21u=-4 | | {3}-7=2x+13 | | P(1/2)=2x^2-9x-8 | | 3(6x-1)=33x | | 5x-14=x+4+7x | | 2v–-1=5 | | 232=64-y | | 4x-6+10=10x-7x+5 | | -19.67+1.7k-4.88=19.25+7.7k | | s+10=2s | | 2x+6=2x-12 | | 3x+17+2x-2=48-3x+39 | | {x}{3}-7=2x+13 | | 19-13p=-p-5 | | u+3=-7 | | .75(x+20)=2+0.5(x-2) | | 10(x+1+(x+5))=82 | | X^2/2(1-x)=0 | | 4y/3=9/6 | | M^2=23m-132 | | x/4-2=5x= | | .75(x+20)=2+0.5(x-4) | | 4+55x=44+12 | | -30=1.24c | | 13(x+3)–2(3x+11)=2x+7 | | 10y-2=7y+19 | | 7+2x/3=5 | | -90=5(t+30) | | 4/x-3=5/x+5 | | x^2+9x^-2-10=0 | | 3x^2-33x+91=1 |