If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-6x-9=0
a = 6; b = -6; c = -9;
Δ = b2-4ac
Δ = -62-4·6·(-9)
Δ = 252
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{252}=\sqrt{36*7}=\sqrt{36}*\sqrt{7}=6\sqrt{7}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{7}}{2*6}=\frac{6-6\sqrt{7}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{7}}{2*6}=\frac{6+6\sqrt{7}}{12} $
| 3x=6x20 | | 29b+0.8=46.12 | | -16f-15=9f-7 | | 2x+5=9x-6/5 | | 3b+3=91.50 | | 2x+5=9x+6/5 | | −x−4=4x-54 | | 5/2x+6=7/4x+8 | | (5x+10x)+35=240 | | x^2+49-81=0 | | 4x^2+36-144=0 | | r^2+2r+2=98 | | 14-2p=2+2p | | 3^-x=1/27 | | .55=x/20 | | 14=⅔(9y-15) | | -2x+1=−2x+1=-x+8−x+8 | | 8x+1=10x= | | 11,971=2320(1.2)x | | -1=5x-2 | | -5-7m=9m-5 | | 6x-8x-11=-2x+2-11 | | 3(u+4)=-6u-42 | | 0.11(y-6)+0.36y=0.07y-0.50 | | 5x+15=x+35 | | 3x-4+3x+10=180 | | 3.8+6x=8.6;=0.9 | | 0.50x0.45(50)=32.5 | | x2+6x=-5 | | x+15=5x-1 | | 6/3x+2/4=3x | | 23x=-46 |