If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-9x=12
We move all terms to the left:
6x^2-9x-(12)=0
a = 6; b = -9; c = -12;
Δ = b2-4ac
Δ = -92-4·6·(-12)
Δ = 369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{369}=\sqrt{9*41}=\sqrt{9}*\sqrt{41}=3\sqrt{41}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-3\sqrt{41}}{2*6}=\frac{9-3\sqrt{41}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+3\sqrt{41}}{2*6}=\frac{9+3\sqrt{41}}{12} $
| 10-x=43 | | 4x+8=2x+6-8x | | 15x2(-+9x)=0 | | (x+10)^3=0 | | 0=-5/4x+1.5 | | 2n+1=-11-2n | | 1/x^2-4x+4=3/x-2 | | 1/6(6/5x+6)=9 | | 3b+8=-4+b | | (k-3)/5=10 | | 4(-3+2r)=8(r+6) | | 2(k+7)=2k-5 | | F(x)=1-6x/x^2-10x-11 | | K/7-6=3/7k+4 | | 3-y=35 | | -2x+15=-3x+23 | | 2x^+12x-18=0 | | -v/9=31 | | 5(6x+2)=40 | | -7(2n-3)=133 | | x+7x2=24 | | 1=8u-7u | | 4.4m=6.2=8.8m-1.8 | | -1=-7+3v | | -2p+3=-19 | | (g-8)/8=5/8 | | -3(4x+2)=13 | | 4.4m=6.2=8.8-1.8 | | x-16=74-5x | | 12=2n-6n | | -12+|4x-6|=-6 | | (k-3)/2=12 |