If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2=32
We move all terms to the left:
6x^2-(32)=0
a = 6; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·6·(-32)
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{3}}{2*6}=\frac{0-16\sqrt{3}}{12} =-\frac{16\sqrt{3}}{12} =-\frac{4\sqrt{3}}{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{3}}{2*6}=\frac{0+16\sqrt{3}}{12} =\frac{16\sqrt{3}}{12} =\frac{4\sqrt{3}}{3} $
| 18y–17=7 | | x/2+2x/5-x/3=17/30 | | 2/3=7/12x | | 5x^-4x=6 | | (.3x/5)-2*((2x/5+1))=28 | | -7+4m+10=15 | | 3(x-9)=8(x+7)-x | | 20+30x=36+38x | | h/4+6=2 | | (2b)^2+b^2=100 | | 3/4=4/5-4k | | 7y-1=11+1 | | Y-1=(2/3(x+3) | | 2(w+6)=228 | | 4x+48=5x+24 | | 2n-2=-6 | | 5x-25=3x+3 | | 9+8a+6-7a=7-3a | | 14b-2=19b/ | | 1/2n+7=1n+14/2 | | 2x-54-7x=61 | | 4^(6x+5)=1/8^(9x) | | 25a-10=-13a+10 | | 3y=33/5 | | t-18=8 | | 10^2+x-3=0 | | 15x=900 | | 12=x/9+4 | | 11x-(2x+4)+19=4x | | 1=p/14+2 | | x+1=-3/2x+6 | | (X+1)(x+2)=x2+6x-10 |