6y(y+8)=3(2y-7)

Simple and best practice solution for 6y(y+8)=3(2y-7) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6y(y+8)=3(2y-7) equation:



6y(y+8)=3(2y-7)
We move all terms to the left:
6y(y+8)-(3(2y-7))=0
We multiply parentheses
6y^2+48y-(3(2y-7))=0
We calculate terms in parentheses: -(3(2y-7)), so:
3(2y-7)
We multiply parentheses
6y-21
Back to the equation:
-(6y-21)
We get rid of parentheses
6y^2+48y-6y+21=0
We add all the numbers together, and all the variables
6y^2+42y+21=0
a = 6; b = 42; c = +21;
Δ = b2-4ac
Δ = 422-4·6·21
Δ = 1260
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1260}=\sqrt{36*35}=\sqrt{36}*\sqrt{35}=6\sqrt{35}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-6\sqrt{35}}{2*6}=\frac{-42-6\sqrt{35}}{12} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+6\sqrt{35}}{2*6}=\frac{-42+6\sqrt{35}}{12} $

See similar equations:

| -6c+2=-5c+10 | | 20(4c-7)=50 | | 18x-2x+2+6=15x+12 | | -3t+20.5=t+31.5 | | z-69=-21 | | -2y=-1-y | | 3/2x-10=-7 | | 81/54=m/6 | | -17f+13+12=5f-19 | | -8f=-6-7f | | k-75/8=8 | | -4(-5v+5)−4v=6(v−4)−1 | | 5w=-8+4w | | |4x−1|=15 | | 12(x-50)=6(x-3) | | 11.2d-14.29=7.8d-19.73 | | 6x+18=-3x-3-6 | | 8y+12=2y=-18 | | 11x-8=6x+12 | | -16.89-9v+13.48=-10.3v-13.81 | | u-16=13 | | 641=s+458 | | -2(n+3)-4=18 | | 12/16=x/10 | | 667=q+166 | | -13-19z-18=-17z+3 | | -(-6-6)=6x+6 | | (-4(10-a))/(9)=-4 | | r-95=-41 | | |5x+4|=−2x+39 | | 11x+77=30x=40-6x | | -9m-7=-14-8m |

Equations solver categories