6y+2y(y-9)=5(y+1)-3

Simple and best practice solution for 6y+2y(y-9)=5(y+1)-3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 6y+2y(y-9)=5(y+1)-3 equation:



6y+2y(y-9)=5(y+1)-3
We move all terms to the left:
6y+2y(y-9)-(5(y+1)-3)=0
We multiply parentheses
2y^2+6y-18y-(5(y+1)-3)=0
We calculate terms in parentheses: -(5(y+1)-3), so:
5(y+1)-3
We multiply parentheses
5y+5-3
We add all the numbers together, and all the variables
5y+2
Back to the equation:
-(5y+2)
We add all the numbers together, and all the variables
2y^2-12y-(5y+2)=0
We get rid of parentheses
2y^2-12y-5y-2=0
We add all the numbers together, and all the variables
2y^2-17y-2=0
a = 2; b = -17; c = -2;
Δ = b2-4ac
Δ = -172-4·2·(-2)
Δ = 305
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-\sqrt{305}}{2*2}=\frac{17-\sqrt{305}}{4} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+\sqrt{305}}{2*2}=\frac{17+\sqrt{305}}{4} $

See similar equations:

| 3b-9=-15 | | x-2/4=2x+1/3 | | 92=-4(2r-5) | | 3x+10-4x=8x-(10-7x) | | 41=x+24 | | x-2/4=2x=1/3 | | |m+8|=12 | | -5=-4+x/10 | | 7(9+x)=77 | | -37-5b=-2(6b-6) | | 5(t+4)-3t=2t | | 8x+40=36 | | 0=16-1/4x^2 | | 10(12x+10x)+11(4-2x)=398 | | 5=a=4 | | (2x)/(3)+(x)/(5)=(26)/(3) | | -2(2x+1)=26 | | 1.4t−0.4(t−3.1)=5.8 | | (x+2)/(x-3)=0 | | 2×r÷3=16 | | 41=x+25 | | 5/7*p=15 | | 35x^2+108x+28=0 | | -1=-7-k | | 5x-8+3x+10=18 | | 4(7x+9)=-7 | | 2x+10+4x-3=49 | | 0.5(5+7x)=8-(4x-6) | | 3x-5(x-2)=-6+4x-26 | | 2=-16t^2+126t | | 5(-28/15)+3x=7 | | -2=4+3(3a-2) |

Equations solver categories