If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2+12y=0
a = 6; b = 12; c = 0;
Δ = b2-4ac
Δ = 122-4·6·0
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-12}{2*6}=\frac{-24}{12} =-2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+12}{2*6}=\frac{0}{12} =0 $
| 3(2m+4)=3(98-2m) | | 8(x-2)-3x=2(x-8)+3x | | -16=-4(3x-2) | | (5x-2)=22 | | c=-1+2.5000000015/3.000000003 | | 2(2.4z+3.5)=26.2 | | v2=15v | | (2x+8)=10 | | 4(1.4z+2.75)=-0.2 | | -7.2(x+-15.6)=-9 | | 38.6-3u=1.1 | | 2+x=3(×-8)+24 | | (B^2+6b)/2=36 | | 5y+3(y+2=54 | | 3=3(d+7)-7d | | -5u/6=-35 | | 0.6d=0.12 | | 13.8+1y=8 | | 2x=1/2(8x-43+10) | | 5(2)x+1=94 | | 6x+3=2x+3=2x+15 | | (B(b+6))/2=36 | | k/2+9=93 | | -200x0=0 | | -2–30=-6a+-3a | | 1/4y+6=1/6y | | -4(1.083333333+0.166666667c)-3c=3 | | 2x^2-15x=208 | | 5/6x+2/9=1/3x-5/18 | | 1/2(4-3x)=20 | | 5x-5.88=-3.13 | | 7y-9=14 |