If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2+15y=0
a = 6; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·6·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{225}=15$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*6}=\frac{-30}{12} =-2+1/2 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*6}=\frac{0}{12} =0 $
| 2x=(180-x)-48 | | 2x+12+102=170 | | m-4=11-7m-7m | | 3.6g+6=1.6g+10 | | 3x-5=20x | | 12(5-k)=22 | | 2(b+3)=3 | | 12-(3y)=15 | | 2x-3=-16 | | 2x+17-7-7x-6=8-10x-19+5x | | 225+5.5x=540 | | 10+10c=9c | | 5e-1/3=-3/4 | | |5x+3|=12 | | n+4=12-4n+6n | | 13x+4=2x-11 | | (9x-4)+13(x-2)= | | 6/4=1/2+b | | -24a-15•+•6=5 | | 1+2m+1=-1+2m | | 4m+.09=2.5 | | -52=-3x-22 | | 5=15-24a•+•6 | | 2-9=a-5 | | 6(y-2)-4(y-3)=8-2y | | 100=25+5x | | E^x-3=0.9 | | -2-8t=10t+10 | | 9-nn=7 | | 2x-55=11x=280 | | 1/2x-9=4x | | 121x^2+49=105 |