If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2+19y+15=0
a = 6; b = 19; c = +15;
Δ = b2-4ac
Δ = 192-4·6·15
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(19)-1}{2*6}=\frac{-20}{12} =-1+2/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(19)+1}{2*6}=\frac{-18}{12} =-1+1/2 $
| 6x+9=−3x+27 | | 2/3x-2)=3 | | 210(t+5)=41,790 | | m/29=(-175) | | 49/7=x/7 | | 2x/5x+2/3=3 | | 6k+1=3k+10 | | -18-19-5k=11-13k | | 16k2-64=0 | | -3(-5z-2z)=7z | | 5/x-4=5/x+5 | | m+257=188 | | 1/2+3-1-x=6x=5+3 | | 15y=14y+15 | | 14=(2x-4)/(-3) | | n(n+1)=840 | | 8x=6x-22 | | 207=m-789 | | 4~=w-6~ | | -3(5z-2z)=7z | | 6=2(x-3)-8x | | 7^2x=7^18.4 | | 17c-18=18+15c | | 1-4p-3=18 | | 23-1+45x=135 | | 16m=368 | | 4=w-6~~ | | 10-6v-8v=-9v-10 | | Y-50=3(x-30) | | 8y-36=6(y-7) | | (2x-2)^2=30 | | T^2=20+2t |