If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2+29y+20=0
a = 6; b = 29; c = +20;
Δ = b2-4ac
Δ = 292-4·6·20
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(29)-19}{2*6}=\frac{-48}{12} =-4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(29)+19}{2*6}=\frac{-10}{12} =-5/6 $
| (4x+1000)=50000 | | 10x-1=330 | | 4+(x-5)=4+(×-5) | | 4+x-5=4+×-5 | | 6y+10÷10=7 | | (8x-18)=(5x+4) | | -5/w-2=-5/2w-4-4 | | 3x2+x-243=0 | | 3x-5x+30=-2(x-15) | | -2/y-4=-6/3y-12+2 | | 2.5x-2x=-6+15 | | 2×(x+4)=5×(3x+4) | | 2(h+1)=6h-7 | | 62=35b+2 | | V=35b+2 | | -4(1y+10)=20 | | -1(x-0)=5 | | 2/3y+3=1/5+y | | -5(-3x-1)=-45 | | 16=(32/x)+2x | | 3-8(7-3x)=0 | | 7-4(9x+6)=8 | | 3÷w-2+(8/w)=5/w | | x+32=(90-x) | | 6+2x=8-3x= | | -19=-x-7 | | -16x^2+80x+64=0 | | y÷7+6=1 | | x+38=(90-x) | | 2^x=500 | | x^2=5000 | | 46=37+w |