If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2+5=-13y
We move all terms to the left:
6y^2+5-(-13y)=0
We get rid of parentheses
6y^2+13y+5=0
a = 6; b = 13; c = +5;
Δ = b2-4ac
Δ = 132-4·6·5
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-7}{2*6}=\frac{-20}{12} =-1+2/3 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+7}{2*6}=\frac{-6}{12} =-1/2 $
| 15/x+3=12/x+1 | | -16n-7n+9n+14n+-20n=18 | | 5(2x+4)=420 | | -3t+9≥=-21 | | 6x-27-10=15+8x | | -10.5x+7=9-4.5x | | 21/a=-7 | | g-1.3=-4.5 | | -4(2x+5)=-308 | | -2x-(7)=11 | | (4x+84)+(11x+28)=180 | | -12x+30=6 | | -3(3x+4)=-453 | | 1=25x | | y-14/2=13 | | -9x+0.25(8x-12)=11 | | 2d-12=40 | | 16=-4(y+3)4) | | 180=80+x+61+x+55 | | 15x+-44=61 | | 672=-3x | | 12+8=6y | | 5x-20=3x+37 | | 0=-16t^2+760 | | 6x-7=-4+7 | | 11+9s=65 | | 10.5x+7=9-4.5x | | 180=11x-18+11x-18+40 | | 8=-8w+3(w-4) | | x+11=221 | | 3x-12=756 | | 13w-14w+15w-12w=-20 |