If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2+5y-1=0
a = 6; b = 5; c = -1;
Δ = b2-4ac
Δ = 52-4·6·(-1)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-7}{2*6}=\frac{-12}{12} =-1 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+7}{2*6}=\frac{2}{12} =1/6 $
| 4|−4x|+7=55 | | -18+6n=30 | | k^2+9k=18 | | -2(p+12)=-6 | | 8(4r-3)=-6(r+4) | | 5b/2-4b/7=-4 | | 2(2x+1=26) | | 4−4x+7=55 | | 5x+3+20x+7=185 | | 8x+10x=30 | | g/3-19=-15 | | -14+4(9x-4)=4(1+x) | | x/14=17/14 | | (5r)/2=-7 | | -26=2(x-8)-4x | | -9-6n=-6(6n+6)-3 | | 20m=-380 | | n/2+-3=-4 | | 1-5x=-(5x+5) | | 0.20x=5 | | 10=3+x/2 | | 9m-(1-7m)=31 | | 7+7(2n-1)=-98 | | 11x+6=25 | | /-6x-10x-55=137 | | 3b-33=5(7b+5)+6 | | 7x-34=4x+49 | | -2(x-3)=-16+24 | | 3(2s+1=-21 | | -5x+6=4x+78 | | 3(5k+1)=3k+21 | | -7(2x-8)=86 |