If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6y^2+6y=0
a = 6; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·6·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*6}=\frac{-12}{12} =-1 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*6}=\frac{0}{12} =0 $
| 6w-2=-2 | | 3x+5=5x-20=180 | | y=15×+10 | | y2-5y+3=0 | | 4x-84-x+78=180 | | 4c(c+3)=-8 | | 4x²+25x+16=0 | | 10+34x=14x+13 | | 36=4•b | | 7y+2(y-4)=0 | | y2+y+1=0 | | 9y+2+2y+7=15y-15 | | 5(2x+1)(x+2)=0 | | 9t^2=4 | | 2x-3+3x-62=180 | | 2.5x+.45=7x+1.8 | | 16b^2=9 | | 1+11x=34x−11+11 | | 6/7z+15=93 | | 0=−16x^2+484 | | 12-7x=x+14 | | 2.4(5x+10)-3=27 | | 3x²-18x-39=0 | | 43=3-5/9z | | 8u2-3u+4=0 | | 7/12b-19=23 | | 18069333.33333=1/3•440•440•y | | .7w-0.5+.3w=4 | | 9+2(2y-1)=-2(5y-2)+2y | | 8U^2-3u+4=0 | | 0.4p+(-3)=-11 | | 54=(887)(.0263)(x) |