If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6z^2+11z+3=0
a = 6; b = 11; c = +3;
Δ = b2-4ac
Δ = 112-4·6·3
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(11)-7}{2*6}=\frac{-18}{12} =-1+1/2 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(11)+7}{2*6}=\frac{-4}{12} =-1/3 $
| -4/3x+3/5=-25/6x+7/5 | | 10x-6+2x+3x=180 | | -4(3n-2n)-n=-11(n-1) | | 14-2p-p=26 | | 6(x4)=3(x+7) | | 50+50-25x2+2+2=54 | | m^2=-14m-45 | | 10+3m+6=31 | | .8=x/600000 | | 9w+7-2w=14 | | 24y=85 | | 20387638x+5667=66777-48463638x | | 2=11/2x | | R=(15y+26) | | 15x+3.14=180 | | 8(4-x)=96 | | 68=7a | | 11x+-1=37+12x | | (x+2)^2/3=4 | | 68=3a-10a | | 5/x+2=10 | | (x+2)^(2/3)=4 | | x*1,800*2=378 | | 6+12x=10x-4 | | 180-2x=5x+5 | | 9x-25=x | | 9x=-25+x | | x²-1-3x+11=x²+3x | | 8p-65=3p | | 39-7x=-47x+7+4 | | x/5x=64 | | 2y=y+28 |