If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6z^2+18z=0
a = 6; b = 18; c = 0;
Δ = b2-4ac
Δ = 182-4·6·0
Δ = 324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{324}=18$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-18}{2*6}=\frac{-36}{12} =-3 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+18}{2*6}=\frac{0}{12} =0 $
| 2x+5=16. | | 2x-3=100 | | 210/84=x/60 | | (13-y)+5y=37 | | 7(8+3)=w | | +15=3w+1/2 | | T=16^2+6t+0.2 | | 6c+8=12.34 | | 15=+3w+1/2 | | 1/2(2x-4.2)=23.3 | | 5b-3-12b-9= | | 3x+30=6x-12=90 | | (3x+2)/4+(x-2)/3=(2)+x-5/2 | | -31=-3+4v | | 36x^2-255=0 | | -5w^2+31w-30=0 | | 16(b+11)=3(b+1) | | -5(5n+6)=30 | | 0=12x^2-120x+819 | | (2+3x)/2=5 | | 21=r/9 | | 14z2-3z-5=0 | | 23x-5=21x+ | | (3+r)/7=5 | | 3x+2=15x-9=180 | | 1.”.3=c/4 | | 2(x=6)+3x+4 | | 20/3+x/3=-3x | | v+4/4=3 | | -4y+30=-4/5y | | -4/y=-2 | | -3=q+5/3 |