If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6z^2-9=0
a = 6; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·6·(-9)
Δ = 216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{216}=\sqrt{36*6}=\sqrt{36}*\sqrt{6}=6\sqrt{6}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{6}}{2*6}=\frac{0-6\sqrt{6}}{12} =-\frac{6\sqrt{6}}{12} =-\frac{\sqrt{6}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{6}}{2*6}=\frac{0+6\sqrt{6}}{12} =\frac{6\sqrt{6}}{12} =\frac{\sqrt{6}}{2} $
| x=84-8(-28) | | x-6=-2x-4 | | 9y2-9y-2=0 | | -8(n-3)=88 | | 204=6(6-7n) | | 5x-30=8x+54 | | 5z2-1=0 | | 12x-32x=x | | 9x-4=6x-5.5 | | -84=7(2x-8) | | 3x2+9=0 | | 7(p+5)=84 | | 9t2+5t-1=0 | | -110=-2(7+8b) | | 7x2+6x-2=0 | | 2y÷3+1=6 | | -5r-3(5-8r)=-110 | | 7w2+3w-7=0 | | 8x2+8x+2=0 | | X^2-17x+15=-6x-3 | | -8(8x-4)=-96 | | -195=-6+7(3x-3) | | 17-2x=3+5x | | 5x+6x-4=3x-6-10 | | 5u2+5u-1=0 | | 2v+17=43 | | -3x=-2x-6 | | -8j=-10−7j | | 5u2+5u–1=0 | | 6z=10+7z | | 5+8(-a-4)=-91 | | 9u2-6u+4=0 |