7(2u+1)-(10u*2-15u)/(5u)=82

Simple and best practice solution for 7(2u+1)-(10u*2-15u)/(5u)=82 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7(2u+1)-(10u*2-15u)/(5u)=82 equation:



7(2u+1)-(10u*2-15u)/(5u)=82
We move all terms to the left:
7(2u+1)-(10u*2-15u)/(5u)-(82)=0
Domain of the equation: 5u!=0
u!=0/5
u!=0
u∈R
We add all the numbers together, and all the variables
7(2u+1)-(-15u+10u*2)/5u-82=0
We multiply parentheses
14u-(-15u+10u*2)/5u+7-82=0
We multiply all the terms by the denominator
14u*5u-(-15u+10u*2)+7*5u-82*5u=0
Wy multiply elements
70u^2-(-15u+10u*2)+35u-410u=0
We get rid of parentheses
70u^2+15u-10u*2+35u-410u=0
We add all the numbers together, and all the variables
70u^2-360u-10u*2=0
Wy multiply elements
70u^2-360u-20u=0
We add all the numbers together, and all the variables
70u^2-380u=0
a = 70; b = -380; c = 0;
Δ = b2-4ac
Δ = -3802-4·70·0
Δ = 144400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{144400}=380$
$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-380)-380}{2*70}=\frac{0}{140} =0 $
$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-380)+380}{2*70}=\frac{760}{140} =5+3/7 $

See similar equations:

| 3(y+4)=y+14 | | 10(n-4)=70 | | x+37=71 | | (16x+17)+(9x+11)=78 | | 6m=-2m-13 | | Y-9x=-20 | | 84=6(2)^x | | 5x+2/3x+4=1 | | k^2+2k-25=0 | | (2x-6)/(x-4)=0 | | (17x+11)+(11x+5)=147 | | v/3+9/3=13 | | 10-6s=-116 | | 123+(2x+8)=(20x-67) | | 8k+7=43 | | 9w-7=-25 | | 12-x-x2x=-12 | | 9w-7=25 | | 12-x-2x=12 | | -32+10b=-12 | | 4x+8=3x+24 | | Y+2x+(103-x)=180 | | z-18=5 | | H(y)=16-3y2 | | 2(2x+)=50 | | 34=8+w | | -7+3=3x-2 | | 4(9+r)=84 | | 5.7x-3=-31.5 | | 4x+2/8=5 | | 11+v=27 | | 3x+8=2x-3=85 |

Equations solver categories