7(3-x)=8(4-2x)x=-53/23

Simple and best practice solution for 7(3-x)=8(4-2x)x=-53/23 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7(3-x)=8(4-2x)x=-53/23 equation:



7(3-x)=8(4-2x)x=-53/23
We move all terms to the left:
7(3-x)-(8(4-2x)x)=0
We add all the numbers together, and all the variables
7(-1x+3)-(8(-2x+4)x)=0
We multiply parentheses
-7x-(8(-2x+4)x)+21=0
We calculate terms in parentheses: -(8(-2x+4)x), so:
8(-2x+4)x
We multiply parentheses
-16x^2+32x
Back to the equation:
-(-16x^2+32x)
We get rid of parentheses
16x^2-32x-7x+21=0
We add all the numbers together, and all the variables
16x^2-39x+21=0
a = 16; b = -39; c = +21;
Δ = b2-4ac
Δ = -392-4·16·21
Δ = 177
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-39)-\sqrt{177}}{2*16}=\frac{39-\sqrt{177}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-39)+\sqrt{177}}{2*16}=\frac{39+\sqrt{177}}{32} $

See similar equations:

| p=-7p | | 3(4x)-5=2 | | 20=4/3u | | 140=20x+6+14x-2 | | -1,3m=1/5 | | 1,-6m=-2 | | x=(50000-x)*(10/7) | | 5x+4+2x=46 | | 7x=27=6x=12 | | 84=(2x+2)x | | 7x=276x=12 | | x+x+3x-14=180 | | 3x-14+x+30+x=180 | | 40.9=13.9p+13.1 | | 37.50=d+2.8 | | 22=9t+94 | | 5^(5x-3)=33 | | 8/(4x-4)+3/4x=5/x | | 45.50=3a+93.5 | | (2x-1)/3=x/2 | | 5(x−2)2−20=0 | | 3=6s+15 | | 15x+6=3x+24 | | 36=2y+4y | | 2x÷5-2÷2=x÷5 | | T25=3n+2 | | x-29=116 | | 3/5x–1/3x=x–1 | | 1/5(x-5)=7 | | x-(x*3)-(x*4)=50 | | x-(x/3)-(x/4)=50 | | 35x+5=50 |

Equations solver categories