7(3x+6)4(3+5x)=13+x

Simple and best practice solution for 7(3x+6)4(3+5x)=13+x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7(3x+6)4(3+5x)=13+x equation:


Simplifying
7(3x + 6) * 4(3 + 5x) = 13 + x

Reorder the terms:
7(6 + 3x) * 4(3 + 5x) = 13 + x

Reorder the terms for easier multiplication:
7 * 4(6 + 3x)(3 + 5x) = 13 + x

Multiply 7 * 4
28(6 + 3x)(3 + 5x) = 13 + x

Multiply (6 + 3x) * (3 + 5x)
28(6(3 + 5x) + 3x * (3 + 5x)) = 13 + x
28((3 * 6 + 5x * 6) + 3x * (3 + 5x)) = 13 + x
28((18 + 30x) + 3x * (3 + 5x)) = 13 + x
28(18 + 30x + (3 * 3x + 5x * 3x)) = 13 + x
28(18 + 30x + (9x + 15x2)) = 13 + x

Combine like terms: 30x + 9x = 39x
28(18 + 39x + 15x2) = 13 + x
(18 * 28 + 39x * 28 + 15x2 * 28) = 13 + x
(504 + 1092x + 420x2) = 13 + x

Solving
504 + 1092x + 420x2 = 13 + x

Solving for variable 'x'.

Reorder the terms:
504 + -13 + 1092x + -1x + 420x2 = 13 + x + -13 + -1x

Combine like terms: 504 + -13 = 491
491 + 1092x + -1x + 420x2 = 13 + x + -13 + -1x

Combine like terms: 1092x + -1x = 1091x
491 + 1091x + 420x2 = 13 + x + -13 + -1x

Reorder the terms:
491 + 1091x + 420x2 = 13 + -13 + x + -1x

Combine like terms: 13 + -13 = 0
491 + 1091x + 420x2 = 0 + x + -1x
491 + 1091x + 420x2 = x + -1x

Combine like terms: x + -1x = 0
491 + 1091x + 420x2 = 0

Begin completing the square.  Divide all terms by
420 the coefficient of the squared term: 

Divide each side by '420'.
1.169047619 + 2.597619048x + x2 = 0.0

Move the constant term to the right:

Add '-1.169047619' to each side of the equation.
1.169047619 + 2.597619048x + -1.169047619 + x2 = 0.0 + -1.169047619

Reorder the terms:
1.169047619 + -1.169047619 + 2.597619048x + x2 = 0.0 + -1.169047619

Combine like terms: 1.169047619 + -1.169047619 = 0.000000000
0.000000000 + 2.597619048x + x2 = 0.0 + -1.169047619
2.597619048x + x2 = 0.0 + -1.169047619

Combine like terms: 0.0 + -1.169047619 = -1.169047619
2.597619048x + x2 = -1.169047619

The x term is 2.597619048x.  Take half its coefficient (1.298809524).
Square it (1.686906180) and add it to both sides.

Add '1.686906180' to each side of the equation.
2.597619048x + 1.686906180 + x2 = -1.169047619 + 1.686906180

Reorder the terms:
1.686906180 + 2.597619048x + x2 = -1.169047619 + 1.686906180

Combine like terms: -1.169047619 + 1.686906180 = 0.517858561
1.686906180 + 2.597619048x + x2 = 0.517858561

Factor a perfect square on the left side:
(x + 1.298809524)(x + 1.298809524) = 0.517858561

Calculate the square root of the right side: 0.719623902

Break this problem into two subproblems by setting 
(x + 1.298809524) equal to 0.719623902 and -0.719623902.

Subproblem 1

x + 1.298809524 = 0.719623902 Simplifying x + 1.298809524 = 0.719623902 Reorder the terms: 1.298809524 + x = 0.719623902 Solving 1.298809524 + x = 0.719623902 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.298809524' to each side of the equation. 1.298809524 + -1.298809524 + x = 0.719623902 + -1.298809524 Combine like terms: 1.298809524 + -1.298809524 = 0.000000000 0.000000000 + x = 0.719623902 + -1.298809524 x = 0.719623902 + -1.298809524 Combine like terms: 0.719623902 + -1.298809524 = -0.579185622 x = -0.579185622 Simplifying x = -0.579185622

Subproblem 2

x + 1.298809524 = -0.719623902 Simplifying x + 1.298809524 = -0.719623902 Reorder the terms: 1.298809524 + x = -0.719623902 Solving 1.298809524 + x = -0.719623902 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-1.298809524' to each side of the equation. 1.298809524 + -1.298809524 + x = -0.719623902 + -1.298809524 Combine like terms: 1.298809524 + -1.298809524 = 0.000000000 0.000000000 + x = -0.719623902 + -1.298809524 x = -0.719623902 + -1.298809524 Combine like terms: -0.719623902 + -1.298809524 = -2.018433426 x = -2.018433426 Simplifying x = -2.018433426

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-0.579185622, -2.018433426}

See similar equations:

| 7w+4u-u=1 | | 2x+31=10x-57 | | p-13=71 | | 13=11-2y | | 5(c-12)=2c | | 4-x^4= | | 6x-(4x+4)=8x-34 | | 2(3c+6)=2c+8+4c+4 | | 5x-3=2x+13 | | 4.9x^2+2x-20=0 | | 70-5x=30+5x | | 51(c-12)=2c | | 3x+y=23 | | 5-4(1/4)=8(1/4)+2 | | (2x^2-6x-9)-(3x^2-2x+5)=0 | | 4x-13+(17-2x)-3(x-7)=3x-15 | | 151x+4=122 | | 8(x-7)+7=7(x-9) | | 5-4x=8x+2 | | -10-x=10-3x | | 22=2c+2 | | 16(R+3)=-48 | | -23e+168=76 | | y^3-27= | | 4x+12-5x-30= | | 0.04*(x+10)=0.5 | | 5y^2+39y+28=0 | | 2powerx=22 | | W=.01x^2+100x+7600 | | 2logx=22 | | 4y^2+53y+13= | | 9x-14=5x-18 |

Equations solver categories