If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7(6n^2-30)=840
We move all terms to the left:
7(6n^2-30)-(840)=0
We multiply parentheses
42n^2-210-840=0
We add all the numbers together, and all the variables
42n^2-1050=0
a = 42; b = 0; c = -1050;
Δ = b2-4ac
Δ = 02-4·42·(-1050)
Δ = 176400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{176400}=420$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-420}{2*42}=\frac{-420}{84} =-5 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+420}{2*42}=\frac{420}{84} =5 $
| 4/6x-2=x-2 | | 3(3n2-43)=745 | | |5y-8|=7 | | |5y-8=7 | | 7a-3+15a+58=0 | | -37+x=-32.5 | | (X-1)(x+3)=x^2+5x-7 | | 2d=11+3d | | x(12-5)+2x=1+4x | | 7+15f=14f | | 2(4n2+17)=234 | | 2(x+8)=57.4 | | 5(4n+6)=130 | | c=5÷3 | | 5y+30=-15 | | 8(-6b+5)=-56 | | 16k^2-4(-2k^2+11k-4)=0 | | 3,330t=18 | | 9(n2+11)=180 | | 3,330÷18=t | | 22-(3c+4)=2(c+3)c | | -x^2=3x-16 | | 3,330÷t=18 | | (-4k+16k^2-4(-2k^2+11k-4))=-4 | | t÷3,330=18 | | (-4k+16k^2-4(-2k^2+11k-4)=-4 | | 6(8n-12)=168 | | (1/2)(-4k+16k^2-4(-2k^2+11k-4))=-2 | | 18=6+4w | | m-12=2184 | | (1/2)(-4k+16k^2-4(-2k^2+11k-4)=-2 | | 9(2n+6)=180 |