7(7+9)=8x(8x+6x)

Simple and best practice solution for 7(7+9)=8x(8x+6x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7(7+9)=8x(8x+6x) equation:



7(7+9)=8x(8x+6x)
We move all terms to the left:
7(7+9)-(8x(8x+6x))=0
We add all the numbers together, and all the variables
-(8x(+14x))+716=0
We calculate terms in parentheses: -(8x(+14x)), so:
8x(+14x)
We multiply parentheses
112x^2
Back to the equation:
-(112x^2)
a = -112; b = 0; c = +716;
Δ = b2-4ac
Δ = 02-4·(-112)·716
Δ = 320768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{320768}=\sqrt{256*1253}=\sqrt{256}*\sqrt{1253}=16\sqrt{1253}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{1253}}{2*-112}=\frac{0-16\sqrt{1253}}{-224} =-\frac{16\sqrt{1253}}{-224} =-\frac{\sqrt{1253}}{-14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{1253}}{2*-112}=\frac{0+16\sqrt{1253}}{-224} =\frac{16\sqrt{1253}}{-224} =\frac{\sqrt{1253}}{-14} $

See similar equations:

| 7y-10=7y-10 | | 9x-12=3(4x-4) | | 45º+44º+xº=180 | | 4(3x-5)=7(2x+3 | | 2^2^n=300000 | | (2-3x)/2=-8 | | 0.02x^2+3x+72=0 | | 16y2+24y=9 | | -x+28=14 | | 17x−14x−2x+4x+3x=8 | | 7(z-4)=4z+2 | | 15x+1=4x-10 | | 9x-3x=4+2 | | 10x+6-4=8x-2 | | 6x+3-5=-3x+2 | | –24=2(c–6) | | 6(-(2/3)+-1(1/3)y)+6y=-6 | | 3x+200=3000 | | 5/12+24=x | | u4+20=22 | | (3n+5)=180 | | 2d-8=3d-7 | | 4+2a–5+3(a^2+2)=0 | | (z-12)/8=5 | | 5a-28=32 | | (b+7)/3=-9 | | (x-3)/6=5 | | 0=21c | | x/(-5)-12=8 | | -10/9+r=-7/18 | | 9^3x=27^4x+2 | | -10/9+r=-7/8 |

Equations solver categories