If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7(h)=(1/3)(h+2)
We move all terms to the left:
7(h)-((1/3)(h+2))=0
Domain of the equation: 3)(h+2))!=0We add all the numbers together, and all the variables
h∈R
7h-((+1/3)(h+2))=0
We multiply parentheses ..
-((+h^2+1/3*2))+7h=0
We multiply all the terms by the denominator
-((+h^2+1+7h*3*2))=0
We calculate terms in parentheses: -((+h^2+1+7h*3*2)), so:We get rid of parentheses
(+h^2+1+7h*3*2)
We get rid of parentheses
h^2+7h*3*2+1
Wy multiply elements
h^2+42h*2+1
Wy multiply elements
h^2+84h+1
Back to the equation:
-(h^2+84h+1)
-h^2-84h-1=0
We add all the numbers together, and all the variables
-1h^2-84h-1=0
a = -1; b = -84; c = -1;
Δ = b2-4ac
Δ = -842-4·(-1)·(-1)
Δ = 7052
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{7052}=\sqrt{4*1763}=\sqrt{4}*\sqrt{1763}=2\sqrt{1763}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-84)-2\sqrt{1763}}{2*-1}=\frac{84-2\sqrt{1763}}{-2} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-84)+2\sqrt{1763}}{2*-1}=\frac{84+2\sqrt{1763}}{-2} $
| 2r^2-4=196 | | 3.22x=14 | | 6t^2+5=2t^2+t | | 4(3+2x)=68 | | 5(3x-7)+2=6(2x+5)-7(x-1 | | $3.22x=14 | | 1.5(4x-2)-2x=1 | | 3u+5=11 | | 8(j-92)=40 | | 4-7x=1=6x | | x-7=13- | | 15x+5=20+5x | | 1/3x+3/8x=-9/2+3/4x | | 2b–15=33 | | 45+39.75x=164.34 | | 3x-6=4/5 | | 31n=49 | | 18x^2-14x-11=0 | | 340.00=200+0.56x | | 3^2(4x-2)-2x=1 | | 15=6x^2-8x | | 3*2(4x-2)-2x=1 | | -4.5g=9 | | -29=3(v-8)-8v | | -9(b-93)=-27 | | 3+2x=4x-9 | | 40x+50x=390 | | C=38.28+0.25x | | 4x+x-15+3-18x=13 | | p-7.2=13 | | 37=z/2+30 | | 8+5x=3x+10 |