If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7(t+5t+9)+t=t(7t-2)13
We move all terms to the left:
7(t+5t+9)+t-(t(7t-2)13)=0
We add all the numbers together, and all the variables
7(6t+9)+t-(t(7t-2)13)=0
We add all the numbers together, and all the variables
t+7(6t+9)-(t(7t-2)13)=0
We multiply parentheses
t+42t-(t(7t-2)13)+63=0
We calculate terms in parentheses: -(t(7t-2)13), so:We add all the numbers together, and all the variables
t(7t-2)13
We multiply parentheses
91t^2-26t
Back to the equation:
-(91t^2-26t)
43t-(91t^2-26t)+63=0
We get rid of parentheses
-91t^2+43t+26t+63=0
We add all the numbers together, and all the variables
-91t^2+69t+63=0
a = -91; b = 69; c = +63;
Δ = b2-4ac
Δ = 692-4·(-91)·63
Δ = 27693
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{27693}=\sqrt{9*3077}=\sqrt{9}*\sqrt{3077}=3\sqrt{3077}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(69)-3\sqrt{3077}}{2*-91}=\frac{-69-3\sqrt{3077}}{-182} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(69)+3\sqrt{3077}}{2*-91}=\frac{-69+3\sqrt{3077}}{-182} $
| −9b−81=54 | | 2/7+x/7=51/7 | | 25=-4.9x^2+23.4x+1.3 | | 7x+3=3+6x | | 8z-20=-4 | | 3(x−9)=15 | | 3x2+14x-49=0 | | 7v2-7=0 | | 7x-4+5x+8=148 | | -30=30-5a | | -1x-7x=8 | | -2(j+6)=j+3+3j | | 14w-8w=18 | | 0.13(y-2)+0.22y=0.05y-0.20 | | 4x+3x=16+(-1)+38 | | 10-Z=19z | | 5(-2+8m)=10+5m | | 5y-12=y-6 | | -8b+56=-56 | | 1/4x-1/3=x+7 | | 542=0.5x^2+10x+200 | | 0.19(y-2)+0.04y=0.03y-0.30 | | 0=−16t2+30t+78 | | -16x+12+2x+4=-12 | | 3x-1+4x^2=0 | | 0.50x+0.45(30)=49.5 | | 3/4=w+3/5 | | 2x+105+71=180 | | (0.7x+1.2)-(0.3x-0.8)=2.8 | | (1,4)m=3 | | 7p2-38p-24=0 | | 5/3x-2/3=1 |