7(x-4)+4=9x-2x(x+12)

Simple and best practice solution for 7(x-4)+4=9x-2x(x+12) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7(x-4)+4=9x-2x(x+12) equation:



7(x-4)+4=9x-2x(x+12)
We move all terms to the left:
7(x-4)+4-(9x-2x(x+12))=0
We multiply parentheses
7x-(9x-2x(x+12))-28+4=0
We calculate terms in parentheses: -(9x-2x(x+12)), so:
9x-2x(x+12)
We multiply parentheses
-2x^2+9x-24x
We add all the numbers together, and all the variables
-2x^2-15x
Back to the equation:
-(-2x^2-15x)
We add all the numbers together, and all the variables
-(-2x^2-15x)+7x-24=0
We get rid of parentheses
2x^2+15x+7x-24=0
We add all the numbers together, and all the variables
2x^2+22x-24=0
a = 2; b = 22; c = -24;
Δ = b2-4ac
Δ = 222-4·2·(-24)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{676}=26$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(22)-26}{2*2}=\frac{-48}{4} =-12 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(22)+26}{2*2}=\frac{4}{4} =1 $

See similar equations:

| 80=10d–20 | | 2(p+1)=4 | | -5x-(-7-4x)=(-2(3x-4) | | 13+2-4x=3(3x+1) | | x/3+4=3/4 | | 6x-40=3x-20 | | -10+k/3=-15 | | 7+4x=x+3+x | | 2w-49+w-27+w+28=180 | | 3)2/5x-3=7 | | 8(3+2v)=-72 | | 3(x-2)=9x+6 | | -3x+4x=-8 | | 2p/3+10/3=-6 | | 6r-7=-13+6r | | 18y+46=190 | | 12w+10-2w=50 | | 9t+7t-27+2t+27=180 | | -6(x-4)+8x=2(x+9 | | 5x-10+60=100 | | m+3-2=1 | | 4(2x+0)=5(x+5)+2 | | -15=y+7 | | 58=-6(x-7)-2x | | 18x+8=224 | | 2c-3-5=4c=22 | | X2+4x=144 | | 33a-38+33a-35+2a+49=180 | | 2+4(x-8)=5(x-4)-3x | | 8b-5=-5+3b | | 9+3=2n-6 | | 5-4j=41 |

Equations solver categories