If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7(y+8)7y+19=0
We multiply parentheses
49y^2+392y+19=0
a = 49; b = 392; c = +19;
Δ = b2-4ac
Δ = 3922-4·49·19
Δ = 149940
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{149940}=\sqrt{1764*85}=\sqrt{1764}*\sqrt{85}=42\sqrt{85}$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(392)-42\sqrt{85}}{2*49}=\frac{-392-42\sqrt{85}}{98} $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(392)+42\sqrt{85}}{2*49}=\frac{-392+42\sqrt{85}}{98} $
| 5x+47=7x+67 | | 29-5=-4x | | -4-3x-4x=4-5 | | 16v+3v+v+2v-19v=18 | | 13c-7c-4c-c=13 | | 16m+4m-4m-11m=20 | | 5x-37=7x-55 | | |5x-1|=|7x+3x| | | |3x-2|=x-18 | | 2(3x-3)=11 | | 68=12+c | | 8w-13w+9w=-12 | | 16h+-20h=20 | | 4x-11=5x-13 | | 4y–8=3y–11 | | 3x=+7=-5 | | 16h+–20h=20 | | 3x-6=-1+4x | | -x+5=-4x-7 | | 6x+42=5x+36 | | 2(12x+1)+12=22 | | 10x-73=-9x+60 | | 4k-k+4k-3k-k=15 | | -8p+12p-11p=-14 | | -6x-56=6x+64 | | 16w-13w+-13w—5w-9w=14 | | 12r-10r=2 | | 9x+48=8x+43 | | 2(x-5)-8=34 | | 10u-9u+3u-2u=6 | | 2(2x-3)-3(x-5)=12 | | 10a-7a-a=14 |