If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 7(y + -3) * 5 = 4(2 + -1y) * 3y Reorder the terms: 7(-3 + y) * 5 = 4(2 + -1y) * 3y Reorder the terms for easier multiplication: 7 * 5(-3 + y) = 4(2 + -1y) * 3y Multiply 7 * 5 35(-3 + y) = 4(2 + -1y) * 3y (-3 * 35 + y * 35) = 4(2 + -1y) * 3y (-105 + 35y) = 4(2 + -1y) * 3y Reorder the terms for easier multiplication: -105 + 35y = 4 * 3y(2 + -1y) Multiply 4 * 3 -105 + 35y = 12y(2 + -1y) -105 + 35y = (2 * 12y + -1y * 12y) -105 + 35y = (24y + -12y2) Solving -105 + 35y = 24y + -12y2 Solving for variable 'y'. Combine like terms: 35y + -24y = 11y -105 + 11y + 12y2 = 24y + -12y2 + -24y + 12y2 Reorder the terms: -105 + 11y + 12y2 = 24y + -24y + -12y2 + 12y2 Combine like terms: 24y + -24y = 0 -105 + 11y + 12y2 = 0 + -12y2 + 12y2 -105 + 11y + 12y2 = -12y2 + 12y2 Combine like terms: -12y2 + 12y2 = 0 -105 + 11y + 12y2 = 0 Begin completing the square. Divide all terms by 12 the coefficient of the squared term: Divide each side by '12'. -8.75 + 0.9166666667y + y2 = 0 Move the constant term to the right: Add '8.75' to each side of the equation. -8.75 + 0.9166666667y + 8.75 + y2 = 0 + 8.75 Reorder the terms: -8.75 + 8.75 + 0.9166666667y + y2 = 0 + 8.75 Combine like terms: -8.75 + 8.75 = 0.00 0.00 + 0.9166666667y + y2 = 0 + 8.75 0.9166666667y + y2 = 0 + 8.75 Combine like terms: 0 + 8.75 = 8.75 0.9166666667y + y2 = 8.75 The y term is 0.9166666667y. Take half its coefficient (0.4583333334). Square it (0.2100694445) and add it to both sides. Add '0.2100694445' to each side of the equation. 0.9166666667y + 0.2100694445 + y2 = 8.75 + 0.2100694445 Reorder the terms: 0.2100694445 + 0.9166666667y + y2 = 8.75 + 0.2100694445 Combine like terms: 8.75 + 0.2100694445 = 8.9600694445 0.2100694445 + 0.9166666667y + y2 = 8.9600694445 Factor a perfect square on the left side: (y + 0.4583333334)(y + 0.4583333334) = 8.9600694445 Calculate the square root of the right side: 2.993337509 Break this problem into two subproblems by setting (y + 0.4583333334) equal to 2.993337509 and -2.993337509.Subproblem 1
y + 0.4583333334 = 2.993337509 Simplifying y + 0.4583333334 = 2.993337509 Reorder the terms: 0.4583333334 + y = 2.993337509 Solving 0.4583333334 + y = 2.993337509 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-0.4583333334' to each side of the equation. 0.4583333334 + -0.4583333334 + y = 2.993337509 + -0.4583333334 Combine like terms: 0.4583333334 + -0.4583333334 = 0.0000000000 0.0000000000 + y = 2.993337509 + -0.4583333334 y = 2.993337509 + -0.4583333334 Combine like terms: 2.993337509 + -0.4583333334 = 2.5350041756 y = 2.5350041756 Simplifying y = 2.5350041756Subproblem 2
y + 0.4583333334 = -2.993337509 Simplifying y + 0.4583333334 = -2.993337509 Reorder the terms: 0.4583333334 + y = -2.993337509 Solving 0.4583333334 + y = -2.993337509 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-0.4583333334' to each side of the equation. 0.4583333334 + -0.4583333334 + y = -2.993337509 + -0.4583333334 Combine like terms: 0.4583333334 + -0.4583333334 = 0.0000000000 0.0000000000 + y = -2.993337509 + -0.4583333334 y = -2.993337509 + -0.4583333334 Combine like terms: -2.993337509 + -0.4583333334 = -3.4516708424 y = -3.4516708424 Simplifying y = -3.4516708424Solution
The solution to the problem is based on the solutions from the subproblems. y = {2.5350041756, -3.4516708424}
| s-2=20 | | P^3-25p=5-2p^2 | | y=7+4E+7x | | P^2-25p=5-2p^2 | | 12x^4+20x^3-x^2-14x-5=0 | | 5x+2y+32=21 | | 1+5x=5+1-2x+6x | | x+1=-11+4x | | 93=6p+3(4p+1) | | xy^2+20zxy=0 | | 5m+7-2m+1= | | 12.42+0.09(x+3)=12.92-0.07x | | x+(-3)=-15 | | 15.58+0.08(x+3)=16.08-0.09x | | s-1+18=16 | | z-4z=5z-1-2 | | 4c+-5=11 | | 7(5x+1)=3x-8x | | 19x-4=13x-28 | | -3x-5=-4-2x | | 15.58+0.08(x+3)=16.08+0.09x | | 14y+7x=-9 | | lnx+x=6 | | Log(x)+x=6 | | Ln(x)+x=6 | | -27z-0.2=-37z+1.7 | | 3x+56y=12 | | 8y-2=4(y-3) | | 16z-0.2=26z+2.6 | | 12x-4x+124=12x+72 | | y[n+1]+y[n]=2x[n] | | 3x-7/2=4x-3/6 |