7(y-3)=2y(y-9)+2y

Simple and best practice solution for 7(y-3)=2y(y-9)+2y equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7(y-3)=2y(y-9)+2y equation:



7(y-3)=2y(y-9)+2y
We move all terms to the left:
7(y-3)-(2y(y-9)+2y)=0
We multiply parentheses
7y-(2y(y-9)+2y)-21=0
We calculate terms in parentheses: -(2y(y-9)+2y), so:
2y(y-9)+2y
We add all the numbers together, and all the variables
2y+2y(y-9)
We multiply parentheses
2y^2+2y-18y
We add all the numbers together, and all the variables
2y^2-16y
Back to the equation:
-(2y^2-16y)
We get rid of parentheses
-2y^2+7y+16y-21=0
We add all the numbers together, and all the variables
-2y^2+23y-21=0
a = -2; b = 23; c = -21;
Δ = b2-4ac
Δ = 232-4·(-2)·(-21)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{361}=19$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-19}{2*-2}=\frac{-42}{-4} =10+1/2 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+19}{2*-2}=\frac{-4}{-4} =1 $

See similar equations:

| 4x-12+x+5x=5x+3x | | 4k-12=5-4(k-12) | | 1p+12=30 | | 2−6 | | 2−6 | | -3x+16+3x-7=27-6x | | -2x+19-x+20=15-7x | | 3x+2=x+6, | | 13x+9=90 | | 5t^2-35t=20 | | 10-7x=76 | | 5t^2-35t=-20 | | 6y+8=2y+11 | | 11+4c=31 | | x/19=10 | | 5t^2-35t=15 | | (6d-5)(6d-7)=0 | | 5t^2-35t=25 | | 3x+80=5x+5 | | 3x+80=5x5 | | -9z(z-9)=0 | | 46+90+2x=360 | | 46+90+2x=180 | | ((5x12)/3)+30-50= | | 2(2x-4)=7(6x+6) | | 5t^2-35t=-30 | | 6/3=10/v | | (6j+7)(-6j+5)=0 | | 21+1x=21+3x | | 5p-2/4=2 | | v(6v+1)=0 | | 2(4-x)=8(1+x) |

Equations solver categories