7*7+10*10=x*x

Simple and best practice solution for 7*7+10*10=x*x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7*7+10*10=x*x equation:



7*7+10*10=x*x
We move all terms to the left:
7*7+10*10-(x*x)=0
We add all the numbers together, and all the variables
-(+x*x)+7*7+10*10=0
We add all the numbers together, and all the variables
-(+x*x)+149=0
We get rid of parentheses
-x*x+149=0
Wy multiply elements
-1x^2+149=0
a = -1; b = 0; c = +149;
Δ = b2-4ac
Δ = 02-4·(-1)·149
Δ = 596
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{596}=\sqrt{4*149}=\sqrt{4}*\sqrt{149}=2\sqrt{149}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{149}}{2*-1}=\frac{0-2\sqrt{149}}{-2} =-\frac{2\sqrt{149}}{-2} =-\frac{\sqrt{149}}{-1} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{149}}{2*-1}=\frac{0+2\sqrt{149}}{-2} =\frac{2\sqrt{149}}{-2} =\frac{\sqrt{149}}{-1} $

See similar equations:

| 5h–2h2=0 | | 9x-6=9x-3 | | 4k-6=12k-16-2 | | 2(8-6b)=112 | | 180=(2x+3)+(x-6) | | 2(3a+1)=10 | | 2(-2-2y)=24 | | 9.02+1.2x=39 | | 6x-22=-10 | | 6-8(x+4)=18 | | 43+4/9w=1/2 | | 8=4(-1+z) | | -1(6+x)=-12 | | 6(3+4w)=66 | | 10+15x=7.50+25x | | 11x+80=3 | | -10=-2(1+v) | | 18=-3(-2-v) | | 11-2x=45 | | -1(-5+2t)=11 | | x+13.2=20.9 | | 486=((x^2)(1/4x))/3 | | 2b=20+0 | | 2(3-s)=14 | | 119-y=90 | | 2a+3-8a=5 | | 1458=(x^2(1/4x))/4x | | 6x+6x+21=18 | | -10=-2(5-3r) | | 16+x+52=90 | | 3(4+2q)=30 | | 57x=90 |

Equations solver categories