7*7+b*b=10*10

Simple and best practice solution for 7*7+b*b=10*10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7*7+b*b=10*10 equation:



7*7+b*b=10*10
We move all terms to the left:
7*7+b*b-(10*10)=0
We add all the numbers together, and all the variables
b*b+7*7-100=0
We add all the numbers together, and all the variables
b*b-51=0
Wy multiply elements
b^2-51=0
a = 1; b = 0; c = -51;
Δ = b2-4ac
Δ = 02-4·1·(-51)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{51}}{2*1}=\frac{0-2\sqrt{51}}{2} =-\frac{2\sqrt{51}}{2} =-\sqrt{51} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{51}}{2*1}=\frac{0+2\sqrt{51}}{2} =\frac{2\sqrt{51}}{2} =\sqrt{51} $

See similar equations:

| X+1+3x+1=40 | | 3x-(5x-3)=-x(-x-4)+1 | | 72+b2=102 | | (3z+1)(z-2)=(z-1)(z+7) | | F(n)=15+2n/5 | | 2x+(5x-3)=x(-4x+1)-5x | | 3x+(5x-3)(2x-4)=-x(-x-4)-1 | | 3/4=c-2/3 | | (-x+2)(5-25)=-2x(x-4)+7 | | (X-2)(4x+5)-2x(x-4)=-5 | | 9*2x=108 | | 9x=12(0.98-x) | | (X-2)(x+5)+3x(x-4)=7 | | x=120(0.98-x)/90 | | 149=c2 | | c2=149 | | 4(c-6)=-16 | | (−2e+7)*(2e−10)=0 | | (−2e+7)(2e−10)=0 | | -2x-34=2x+2 | | 34e=70/2e | | -3x+13=2x+5 | | -3x-21=x+7 | | -2x+17=x+18 | | 7^(5x)=12 | | |7-2x|=|5-3x|+|x+2| | | x+4x+23=-17 | | 5(z-4)+8z-3=0 | | -15x-2x=16-(3x-9) | | 5x-3(4x-29)=31 | | 2.6x-15.78=-9.7x+27.27 | | 25+2r=65 |

Equations solver categories