If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7+10a+3a^2=0
a = 3; b = 10; c = +7;
Δ = b2-4ac
Δ = 102-4·3·7
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-4}{2*3}=\frac{-14}{6} =-2+1/3 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+4}{2*3}=\frac{-6}{6} =-1 $
| x^2=19/7 | | -10+1+7x=35 | | 5k-7÷4=5 | | 13x+6=22 | | 5k-7/4=5 | | x+61=213 | | 4(t-5)/2(t+6)=1/2 | | m+16=213 | | 6y+18=15y | | x*2x=10 | | 4/7m=2/7(2m+1 | | 4x-6/7x+5=3/2 | | 10=2u-8 | | 4x+3x+35=90 | | 3x/5=21/25 | | 2p÷3-P÷5=35 | | 5x(2)=20 | | -3x/4=-21 | | -5/7u=20 | | 2x-9=99 | | (2x+1)(x+2)=77 | | (6+z)(3z+7)=0 | | (y+50)=(10y+20) | | S+3s+4s=0 | | 2x^2+2x-91=0 | | A(n)=8+(3)+(n-1) | | C=30.00-0.10x | | A(n)=3+(n-1)+(5) | | 8x+3=27+3x | | (y-5/y-3)+1=y+6/y+3 | | f(5)=4X+5Y=13.6 | | f(5)=4X+5Y=13.6 |