7+4x(x+8)=2(4x+5)+9

Simple and best practice solution for 7+4x(x+8)=2(4x+5)+9 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7+4x(x+8)=2(4x+5)+9 equation:



7+4x(x+8)=2(4x+5)+9
We move all terms to the left:
7+4x(x+8)-(2(4x+5)+9)=0
We multiply parentheses
4x^2+32x-(2(4x+5)+9)+7=0
We calculate terms in parentheses: -(2(4x+5)+9), so:
2(4x+5)+9
We multiply parentheses
8x+10+9
We add all the numbers together, and all the variables
8x+19
Back to the equation:
-(8x+19)
We get rid of parentheses
4x^2+32x-8x-19+7=0
We add all the numbers together, and all the variables
4x^2+24x-12=0
a = 4; b = 24; c = -12;
Δ = b2-4ac
Δ = 242-4·4·(-12)
Δ = 768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{768}=\sqrt{256*3}=\sqrt{256}*\sqrt{3}=16\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(24)-16\sqrt{3}}{2*4}=\frac{-24-16\sqrt{3}}{8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(24)+16\sqrt{3}}{2*4}=\frac{-24+16\sqrt{3}}{8} $

See similar equations:

| -4-3x=7x-34 | | X^3-20x+512=0 | | X=3/4x+3/4 | | X-20x+512=0 | | X3-20x+512=0 | | 5/2*x=25/4 | | 1/2=x-4/8 | | x*x*x(2x+7)=105-x | | 29+27=7x | | 3*2^x=7*6^x | | x+14+x+11=21 | | 52=1970+55x÷38+x | | Y=18+-2x | | -1/3=-(2/3)v-3/5 | | ∣4b−5∣=-19 | | x-(x*0.3)=15395 | | 12-5x=4x+17 | | 4x-5x=3x+6 | | 6+x÷-8=4÷7 | | x/14=8/35 | | 4x-5x=3x+60 | | 4x+8=-20-5x | | Y=-9/5x-8/7 | | 7-9x=-x-57 | | -7x-21+4x+5=8x+9 | | 5(2n-3)-(n-8)=13 | | 6x+4=3x+5= | | 5x+3x2=8  | | 4x+2{4-2(x+2)}=2x-4 | | 5x+29=3x+21 | | 8x-14=x+7 | | r-48=-38 |

Equations solver categories