If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7+7z+z2=0
We add all the numbers together, and all the variables
z^2+7z+7=0
a = 1; b = 7; c = +7;
Δ = b2-4ac
Δ = 72-4·1·7
Δ = 21
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{21}}{2*1}=\frac{-7-\sqrt{21}}{2} $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{21}}{2*1}=\frac{-7+\sqrt{21}}{2} $
| 0=−4.9t^2+103t+199 | | (x+3)^5/3-32=0 | | 6x+9=-8x+12 | | -86=5(-7v+8)-7v | | Y+5=-10y+15 | | x-(0.1x^2)=0.6 | | x^2-(x^2/4)=3 | | 14x+8=2x+92 | | 7=3(2x+1) | | X+3=-6x+12 | | C(x)=5000+20xI(x)=80x-0.1x2 | | 4(x-3)-(x+6)=-x+2 | | 14x^2+45x+25=0 | | 0=2(t-6)+8+4(t+7) | | 0=2(t-6)+8+4(t-7) | | 7n-5n+2=12+8 | | x^2+17x-18.96=0 | | 3r8=2 | | π(r)^2-(π(r^2/4))=3π | | 7n+5n+2=12+8 | | 2(2r-1)=4=5(r+1) | | 0.25y+0.10(7y)=0.05(2y-1) | | 4/h=3 | | 1.55p=1320 | | -9z+-z-3z-10=16 | | 1/4x+10=1x+54 | | 22-27=3x+4 | | P=1320+.45p | | 1X+18=x | | 4(w-5)-2(w=1)=3(1-w) | | 13=2+2x | | 1/3x-3=1/2 |