7-3/2x=12+-5/3x

Simple and best practice solution for 7-3/2x=12+-5/3x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7-3/2x=12+-5/3x equation:



7-3/2x=12+-5/3x
We move all terms to the left:
7-3/2x-(12+-5/3x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
Domain of the equation: 3x)!=0
x!=0/1
x!=0
x∈R
We add all the numbers together, and all the variables
-3/2x-(-5/3x)+7=0
We get rid of parentheses
-3/2x+5/3x+7=0
We calculate fractions
(-9x)/6x^2+10x/6x^2+7=0
We multiply all the terms by the denominator
(-9x)+10x+7*6x^2=0
We add all the numbers together, and all the variables
10x+(-9x)+7*6x^2=0
Wy multiply elements
42x^2+10x+(-9x)=0
We get rid of parentheses
42x^2+10x-9x=0
We add all the numbers together, and all the variables
42x^2+x=0
a = 42; b = 1; c = 0;
Δ = b2-4ac
Δ = 12-4·42·0
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1}=1$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-1}{2*42}=\frac{-2}{84} =-1/42 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+1}{2*42}=\frac{0}{84} =0 $

See similar equations:

| -30=30=5a | | -5/3x+12=3/2x-7 | | x/7=3x/15 | | 360=8x+280 | | x+2(4–x)=2x+6–3x | | 2x=5+13x | | 5(.6)(n+25)=5(10+.4n) | | 9a=-2+65 | | -x+2=-6x-3 | | -14x-18=-144 | | 18x=42x+13 | | 4(x–1)+x=5x–4–x | | 11x+22=13x-26 | | 0.07x=18.55 | | 4x=12x+10 | | Y=-4/7x+1 | | 10x-15=20x-10 | | -5+(2a+1)/2=0 | | 4x-12=- | | 18x-24=6x+3 | | 10t^2-60t+500=900 | | 900=10t^2-60t+500 | | 2.7/a-1.4=1.6 | | K=8m | | 0.9+4.8/a=6.9 | | x2+12x+11=920 | | 2p-4=8p | | 3x+15=8x-4 | | 9.1=7x-2.1 | | 4*2+2y=10 | | 7+y/15.36=13 | | 100x2=9 |

Equations solver categories