7/(7b+4)=2/b-4

Simple and best practice solution for 7/(7b+4)=2/b-4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/(7b+4)=2/b-4 equation:



7/(7b+4)=2/b-4
We move all terms to the left:
7/(7b+4)-(2/b-4)=0
Domain of the equation: (7b+4)!=0
We move all terms containing b to the left, all other terms to the right
7b!=-4
b!=-4/7
b!=-4/7
b∈R
Domain of the equation: b-4)!=0
b∈R
We get rid of parentheses
7/(7b+4)-2/b+4=0
We calculate fractions
7b/(7b^2+4b)+(-14b-8)/(7b^2+4b)+4=0
We multiply all the terms by the denominator
7b+(-14b-8)+4*(7b^2+4b)=0
We multiply parentheses
28b^2+7b+(-14b-8)+16b=0
We get rid of parentheses
28b^2+7b-14b+16b-8=0
We add all the numbers together, and all the variables
28b^2+9b-8=0
a = 28; b = 9; c = -8;
Δ = b2-4ac
Δ = 92-4·28·(-8)
Δ = 977
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-\sqrt{977}}{2*28}=\frac{-9-\sqrt{977}}{56} $
$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+\sqrt{977}}{2*28}=\frac{-9+\sqrt{977}}{56} $

See similar equations:

| 2m5=10 | | x-(-2.7)=1 | | 3x•2x=5-3 | | x^2+0.75x^2=19^2 | | 16x2−8x+145=0 | | x-(2)(5)=12 | | 4.2*5.4=9x | | X-3x/2=35 | | x*5.4=4.3*9 | | (X+y)³=1000 | | 5.4x=4.2*9 | | x^2=925 | | x2=925 | | 3.2=0.5x-0.3. | | 7+2x-3=7x+3-6x | | 4y-1,9=6.3 | | 11s+4=48s= | | 2x(10)+(-3x)=23 | | 16+4=-2v+8v | | -(a+45)=56 | | 5.6*5=4x | | 0.70x+0(1000-x)=(0.20)(1000) | | 5.6+5=4x | | -1f=1/2 | | 0.70x+0(1000-x)=(0.20) | | 2x+10+-3x=23 | | 2x+10+-3=23 | | 3k^2-6k-1=-5 | | 10x+4=-6x-12 | | 24=4(x-7)÷8(1-6x) | | 3^x=49 | | 2x-3x+10=15 |

Equations solver categories