If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7/10(30x)+19=3/5(35x)+12
We move all terms to the left:
7/10(30x)+19-(3/5(35x)+12)=0
Domain of the equation: 1030x!=0
x!=0/1030
x!=0
x∈R
Domain of the equation: 535x+12)!=0We get rid of parentheses
x∈R
7/1030x-3/535x-12+19=0
We calculate fractions
3745x/551050x^2+(-3090x)/551050x^2-12+19=0
We add all the numbers together, and all the variables
3745x/551050x^2+(-3090x)/551050x^2+7=0
We multiply all the terms by the denominator
3745x+(-3090x)+7*551050x^2=0
Wy multiply elements
3857350x^2+3745x+(-3090x)=0
We get rid of parentheses
3857350x^2+3745x-3090x=0
We add all the numbers together, and all the variables
3857350x^2+655x=0
a = 3857350; b = 655; c = 0;
Δ = b2-4ac
Δ = 6552-4·3857350·0
Δ = 429025
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{429025}=655$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(655)-655}{2*3857350}=\frac{-1310}{7714700} =-131/771470 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(655)+655}{2*3857350}=\frac{0}{7714700} =0 $
| 24÷10=x | | 0=10-u(3+12) | | (2z+7)(2+z)=0 | | 2x+9x+7=0 | | 6x+6=84 | | x+x+8=3x=24 | | 3x/2+8/2-4x=x/3-5/3 | | 8z±20=52 | | x+x+8=3x-34 | | -2(-6x-3)=-78 | | 4k^2-4k-25=0 | | 3+x=18x= | | 4(5x-3)=-52 | | 3x+8/2-4x=x-5/3 | | 13.1=b/9 | | 7/8x-4=3/4 | | 5(8-7x)=65 | | 2/5-3y/5=2+3/y | | A=3.14x113.04^2 | | 8k−7k=15 | | 1/3n=33 | | 5(x-4)=5x-2 | | 1.17=x+3 | | 2/5-3y/5-3/y=2 | | 3(a+4)-8(a-3)=1 | | x/15=0.7 | | 3x-2+4x-9+3x-9=180 | | 15(2-y)-5(y+6)/1-3y=10 | | 5(3p+3)-9=-3 | | 2(p+8)-6/7=10 | | 2(7+3y)=-y | | f^2/2=51 |