7/10x+3/5=5/6x+1

Simple and best practice solution for 7/10x+3/5=5/6x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/10x+3/5=5/6x+1 equation:



7/10x+3/5=5/6x+1
We move all terms to the left:
7/10x+3/5-(5/6x+1)=0
Domain of the equation: 10x!=0
x!=0/10
x!=0
x∈R
Domain of the equation: 6x+1)!=0
x∈R
We get rid of parentheses
7/10x-5/6x-1+3/5=0
We calculate fractions
1080x^2/1500x^2+1050x/1500x^2+(-1250x)/1500x^2-1=0
We multiply all the terms by the denominator
1080x^2+1050x+(-1250x)-1*1500x^2=0
Wy multiply elements
1080x^2-1500x^2+1050x+(-1250x)=0
We get rid of parentheses
1080x^2-1500x^2+1050x-1250x=0
We add all the numbers together, and all the variables
-420x^2-200x=0
a = -420; b = -200; c = 0;
Δ = b2-4ac
Δ = -2002-4·(-420)·0
Δ = 40000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{40000}=200$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-200)-200}{2*-420}=\frac{0}{-840} =0 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-200)+200}{2*-420}=\frac{400}{-840} =-10/21 $

See similar equations:

| 3-23x=14(x-21)-15(x+33) | | x-25=5-2x | | -y+11-7y=-6(2y+5)+9 | | 7x+11-x=6x+11 | | 3.44-1.25x=1.05(2.38+6.81) | | 6x+5=x-65 | | x6.7x=42.21 | | O=h+|-14| | | 4.9x^2+27.5x=0 | | 4-(n-26)=5(n+5) | | I=h+|-14| | | x+4+6x-47=90 | | 9x-20=4x+50 | | -4x+30=23(x33) | | 12x+10-3x=3(3x-4) | | x=3x=180 | | 28n^2+16n^2-80n^2=0 | | 21/4(d+16)=-5 | | 0.3(2x+1)=x-2 | | m=1/2÷8. | | 2x+2-3x-15=0 | | X+8=7+x-6+7 | | Z=3-3a | | (3x+22)=2x+8 | | 6x7-3^2x9+4^3=25 | | 160+8p=40p | | 4x4=80 | | 4(x+1)=9x+9 | | 1/4(8x-32)-1=-3 | | –2p=–3p+10 | | (3x+22)=(3x+8) | | 5x-27-10x-3=180 |

Equations solver categories