7/10x-3/2=3/5x+2

Simple and best practice solution for 7/10x-3/2=3/5x+2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/10x-3/2=3/5x+2 equation:



7/10x-3/2=3/5x+2
We move all terms to the left:
7/10x-3/2-(3/5x+2)=0
Domain of the equation: 10x!=0
x!=0/10
x!=0
x∈R
Domain of the equation: 5x+2)!=0
x∈R
We get rid of parentheses
7/10x-3/5x-2-3/2=0
We calculate fractions
(-750x^2)/200x^2+140x/200x^2+(-120x)/200x^2-2=0
We multiply all the terms by the denominator
(-750x^2)+140x+(-120x)-2*200x^2=0
Wy multiply elements
(-750x^2)-400x^2+140x+(-120x)=0
We get rid of parentheses
-750x^2-400x^2+140x-120x=0
We add all the numbers together, and all the variables
-1150x^2+20x=0
a = -1150; b = 20; c = 0;
Δ = b2-4ac
Δ = 202-4·(-1150)·0
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{400}=20$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-20}{2*-1150}=\frac{-40}{-2300} =2/115 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+20}{2*-1150}=\frac{0}{-2300} =0 $

See similar equations:

| 6(u+6)-8u=34 | | 57=8x+x+3 | | (5x-9)=(8x-10) | | 11y2−15y−10=0 | | n−3−29=−5 | | z/8=5.25 | | x/2.6=5 | | 4/3=x-2/2 | | 15=25+y/6 | | z/8=3.5 | | 12x+15=18x | | 11x+4x+90=180 | | 6m+20=-28 | | 12x-18=8+10 | | y=10^5.112 | | v/5=4.4 | | t/8=3.5 | | 4+(5(7-x)/9=-1 | | 40=-16t^2+60t+1 | | 23x=86 | | t/7=7.7 | | 3(0)-5y=-5 | | 10+c=110 | | 5/8x=60 | | (3−2i)(2i+3)=13 | | 3y+2y-5=25 | | 8=3/2(9x-6 | | 10x+5+65+4x-7=180 | | 3x^2-14x=16 | | 15-x-5=-11 | | F(x)^-1=2x-19 | | 40x+4(1.5x)=529 |

Equations solver categories