7/10y-2=2/5y+1

Simple and best practice solution for 7/10y-2=2/5y+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7/10y-2=2/5y+1 equation:



7/10y-2=2/5y+1
We move all terms to the left:
7/10y-2-(2/5y+1)=0
Domain of the equation: 10y!=0
y!=0/10
y!=0
y∈R
Domain of the equation: 5y+1)!=0
y∈R
We get rid of parentheses
7/10y-2/5y-1-2=0
We calculate fractions
35y/50y^2+(-20y)/50y^2-1-2=0
We add all the numbers together, and all the variables
35y/50y^2+(-20y)/50y^2-3=0
We multiply all the terms by the denominator
35y+(-20y)-3*50y^2=0
Wy multiply elements
-150y^2+35y+(-20y)=0
We get rid of parentheses
-150y^2+35y-20y=0
We add all the numbers together, and all the variables
-150y^2+15y=0
a = -150; b = 15; c = 0;
Δ = b2-4ac
Δ = 152-4·(-150)·0
Δ = 225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{225}=15$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-15}{2*-150}=\frac{-30}{-300} =1/10 $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+15}{2*-150}=\frac{0}{-300} =0 $

See similar equations:

| 3(4p-6)-12(5)=6 | | 3+$X=3x+6 | | 5x-2x=7x-12 | | 11×3x=64 | | 6x+3.8=-82 | | 2=v4–1 | | -13.8=x-4.3 | | 2 = v4– 1 | | 6x+6=10x+5 | | 6^x=7776 | | 5x+30=11x+40 | | 8=3|7-2x|+5 | | 90+2x=0+7x | | 2p÷3-12=-2 | | 3y/4-5=y/2+5 | | X+x=1+1 | | 7/4y=21/4 | | 12x+5=8x+6 | | 3x(-4)+5x=-9(x-2) | | -34=6(v-6)-8v | | 3x-10+2x=30 | | 8(x-3)=6(x-2) | | 2q/4=3 | | Y=3(7-2x)+5 | | 9=5(x-1)-(x-6) | | 3x÷5=3 | | x+1.4x(x+35)+(x-5)=360 | | 6x+32=136 | | 3(3x-7)-5=3(x-2)-2 | | 5/4=x-7/8 | | x/4+x/6=9/7 | | 2x-(8x+9)=7x-48 |

Equations solver categories